Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Metabolomics ; 20(2): 41, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480600

RESUMO

BACKGROUND: The National Cancer Institute issued a Request for Information (RFI; NOT-CA-23-007) in October 2022, soliciting input on using and reusing metabolomics data. This RFI aimed to gather input on best practices for metabolomics data storage, management, and use/reuse. AIM OF REVIEW: The nuclear magnetic resonance (NMR) Interest Group within the Metabolomics Association of North America (MANA) prepared a set of recommendations regarding the deposition, archiving, use, and reuse of NMR-based and, to a lesser extent, mass spectrometry (MS)-based metabolomics datasets. These recommendations were built on the collective experiences of metabolomics researchers within MANA who are generating, handling, and analyzing diverse metabolomics datasets spanning experimental (sample handling and preparation, NMR/MS metabolomics data acquisition, processing, and spectral analyses) to computational (automation of spectral processing, univariate and multivariate statistical analysis, metabolite prediction and identification, multi-omics data integration, etc.) studies. KEY SCIENTIFIC CONCEPTS OF REVIEW: We provide a synopsis of our collective view regarding the use and reuse of metabolomics data and articulate several recommendations regarding best practices, which are aimed at encouraging researchers to strengthen efforts toward maximizing the utility of metabolomics data, multi-omics data integration, and enhancing the overall scientific impact of metabolomics studies.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Automação
2.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405950

RESUMO

Aging is the biggest risk factor for Parkinson's disease (PD), suggesting that age-related changes in the brain promote dopamine neuron vulnerability. It is unclear, however, whether aging alone is sufficient to cause significant dopamine neuron loss and if so, how this intersects with PD-related neurodegeneration. Here, through examining a large collection of naturally varying Drosophila strains, we find a strong relationship between life span and age-related dopamine neuron loss. Naturally short-lived strains exhibit a loss of dopamine neurons but not generalized neurodegeneration, while long-lived strains retain dopamine neurons across age. Metabolomic profiling reveals lower glutathione levels in short-lived strains which is associated with elevated levels of reactive oxygen species (ROS), sensitivity to oxidative stress and vulnerability to silencing the familial PD gene parkin . Strikingly, boosting neuronal glutathione levels via glutamate-cysteine ligase (GCL) overexpression is sufficient to normalize ROS levels, extend life span and block dopamine neurons loss in short-lived backgrounds, demonstrating that glutathione deficiencies are central to neurodegenerative phenotypes associated with short longevity. These findings may be relevant to human PD pathogenesis, where glutathione depletion is frequently reported in idiopathic PD patient brain. Building on this evidence, we detect reduced levels of GCL catalytic and modulatory subunits in brain from PD patients harboring the LRRK2 G2019S mutation, implicating possible glutathione deficits in familial LRRK2-linked PD. Our study across Drosophila and human PD systems suggests that glutathione plays an important role in the influence of aging on PD neurodegeneration.

3.
Proc Natl Acad Sci U S A ; 121(8): e2307430121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359289

RESUMO

Blood metabolite levels are affected by numerous factors, including preanalytical factors such as collection methods and geographical sites. These perturbations have caused deleterious consequences for many metabolomics studies and represent a major challenge in the metabolomics field. It is important to understand these factors and develop models to reduce their perturbations. However, to date, the lack of suitable mathematical models for blood metabolite levels under homeostasis has hindered progress. In this study, we develop quantitative models of blood metabolite levels in healthy adults based on multisite sample cohorts that mimic the current challenge. Five cohorts of samples obtained across four geographically distinct sites were investigated, focusing on approximately 50 metabolites that were quantified using 1H NMR spectroscopy. More than one-third of the variation in these metabolite profiles is due to cross-cohort variation. A dramatic reduction in the variation of metabolite levels (90%), especially their site-to-site variation (95%), was achieved by modeling each metabolite using demographic and clinical factors and especially other metabolites, as observed in the top principal components. The results also reveal that several metabolites contribute disproportionately to such variation, which could be explained by their association with biological pathways including biosynthesis and degradation. The study demonstrates an intriguing network effect of metabolites that can be utilized to better define homeostatic metabolite levels, which may have implications for improved health monitoring. As an example of the potential utility of the approach, we show that modeling gender-related metabolic differences retains the interesting variance while reducing unwanted (site-related) variance.


Assuntos
Metaboloma , Metabolômica , Adulto , Humanos , Metabolômica/métodos , Espectroscopia de Ressonância Magnética , Homeostase
4.
Transl Res ; 263: 28-44, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619665

RESUMO

To reveal dysregulated metabolism hallmark that was associated with a severe acute pancreatitis (SAP) phenotype. In this study, LC-MS/MS-based targeted metabolomics was used to analyze plasma samples from 106 acute pancreatitis (AP) patients (34 mild, 38 moderate, and 34 severe) admitted within 48 hours from abdominal pain onset and 41 healthy controls. Temporal metabolic profiling was performed on days 1, 3, and 7 after admission. A random forest (RF) was performed to significantly determine metabolite differences between SAP and non-SAP (NSAP) groups. Mass spectrometry imaging (MSI) and immunohistochemistry were conducted for the examination of pancreatic metabolite and metabolic enzyme alterations, respectively, on necrosis and paracancerous tissues. Simultaneously determination of serum and pancreatic tissue metabolic alterations using an L-ornithine-induced AP model to discover metabolic commonalities. Twenty-two significant differential metabolites screened by RF were selected to build an accurate model for the prediction of SAP from NSAP (AUC = 0.955). Six of 22 markers were found by MSI with significant alterations in pancreatic lesions, reduced ornithine-related metabolites were also identified. The abnormally expressed arginase2 and ornithine transcarboxylase were further discovered in combination with time-course metabolic profiling in the SAP animal models, the decreased ornithine catabolites were found at a late stage of inflammation, but ornithine-associated metabolic enzymes were activated during the inflammatory process. The plasma metabolome of AP patients is distinctive, which shows promise for early SAP diagnosis. AP aggravation is linked to the activated ornithine metabolic pathway and its inadequate levels of catabolites in in-situ lesion.


Assuntos
Pancreatite , Animais , Humanos , Pancreatite/diagnóstico , Pancreatite/metabolismo , Doença Aguda , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fenótipo , Ornitina , Índice de Gravidade de Doença
5.
Sci Adv ; 9(49): eade1370, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064556

RESUMO

Bacille Calmette-Guerin (BCG) vaccine can elicit good TH1 responses in neonates. We hypothesized that the pioneer gut microbiota affects vaccine T cell responses. Infants who are HIV exposed but uninfected (iHEU) display an altered immunity to vaccination. BCG-specific immune responses were analyzed at 7 weeks of age in iHEU, and responses were categorized as high or low. Bifidobacterium longum subsp. infantis was enriched in the stools of high responders, while Bacteroides thetaiotaomicron was enriched in low responders at time of BCG vaccination. Neonatal germ-free or SPF mice orally gavaged with live B. infantis exhibited significantly higher BCG-specific T cells compared with pups gavaged with B. thetaiotaomicron. B. infantis and B. thetaiotaomicron differentially affected stool metabolome and colonic transcriptome. Human colonic epithelial cells stimulated with B. infantis induced a unique gene expression profile versus B. thetaiotaomicron. We thus identified a causal role of B. infantis in early-life antigen-specific immunity.


Assuntos
Bifidobacterium longum subspecies infantis , Microbioma Gastrointestinal , Humanos , Lactente , Camundongos , Animais , Vacina BCG , Linfócitos T , Fezes/microbiologia
6.
Circulation ; 148(25): 2038-2057, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37965787

RESUMO

BACKGROUND: Strategies to increase cellular NAD+ (oxidized nicotinamide adenine dinucleotide) level have prevented cardiac dysfunction in multiple models of heart failure, but molecular mechanisms remain unclear. Little is known about the benefits of NAD+-based therapies in failing hearts after the symptoms of heart failure have appeared. Most pretreatment regimens suggested mechanisms involving activation of sirtuin, especially Sirt3 (sirtuin 3), and mitochondrial protein acetylation. METHODS: We induced cardiac dysfunction by pressure overload in SIRT3-deficient (knockout) mice and compared their response with nicotinamide riboside chloride treatment with wild-type mice. To model a therapeutic approach, we initiated the treatment in mice with established cardiac dysfunction. RESULTS: We found nicotinamide riboside chloride improved mitochondrial function and blunted heart failure progression. Similar benefits were observed in wild-type and knockout mice. Boosting NAD+ level improved the function of NAD(H) redox-sensitive SDR (short-chain dehydrogenase/reductase) family proteins. Upregulation of Mrpp2 (mitochondrial ribonuclease P protein 2), a multifunctional SDR protein and a subunit of mitochondrial ribonuclease P, improves mitochondrial DNA transcripts processing and electron transport chain function. Activation of SDRs in the retinol metabolism pathway stimulates RXRα (retinoid X receptor α)/PPARα (proliferator-activated receptor α) signaling and restores mitochondrial oxidative metabolism. Downregulation of Mrpp2 and impaired mitochondrial ribonuclease P were found in human failing hearts, suggesting a shared mechanism of defective mitochondrial biogenesis in mouse and human heart failure. CONCLUSIONS: These findings identify SDR proteins as important regulators of mitochondrial function and molecular targets of NAD+-based therapy. Furthermore, the benefit is observed regardless of Sirt3-mediated mitochondrial protein deacetylation, a widely held mechanism for NAD+-based therapy for heart failure. The data also show that NAD+-based therapy can be useful in pre-existing heart failure.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Sirtuína 3 , Camundongos , Humanos , Animais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , NAD/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Ribonuclease P/metabolismo , Cloretos/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias/metabolismo , Cardiopatias/metabolismo , Camundongos Knockout , Oxirredutases/metabolismo
7.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37787404

RESUMO

Four obligately anaerobic Gram-positive bacteria representing one novel genus and two novel species were isolated from the female genital tract. Both novel species, designated UPII 610-JT and KA00274T, and an additional isolate of each species were characterized utilizing biochemical, genotypic and phylogenetic analyses. All strains were non-motile and non-spore forming, asaccharolytic, non-cellulolytic and indole-negative coccobacilli. Fatty acid methyl ester analysis for UPII 610-JT and KA00274T and additional isolates revealed C16 : 0, C18 : 0, C18:1ω9c and C18:2ω6,9c to be the major fatty acids for both species. UPII 610-JT had a 16S rRNA gene sequence similarity of 99.4 % to an uncultured clone sequence (AY724740) designated as Bacterial Vaginosis Associated Bacterium 2 (BVAB2). KA00274T had a 16S rRNA gene sequence similarity of 96.5 % to UPII 610-JT. Whole genomic DNA mol% G+C content was 42.2 and 39.3 % for UPII 610-JT and KA00274T, respectively. Phylogenetic analyses indicate these isolates represent a novel genus and two novel species within the Oscillospiraceae family. We propose the names Amygdalobacter indicium gen. nov., sp. nov., for UPII 610-JT representing the type strain of this species (=DSM 112989T, =ATCC TSD-274T) and Amygdalobacter nucleatus gen. nov., sp. nov., for KA00274T representing the type strain of this species (=DSM 112988T, =ATCC TSD-275T).


Assuntos
Ácidos Graxos , Lactobacillales , Humanos , Feminino , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Genitália Feminina , Lactobacillales/genética
9.
Anal Chem ; 95(40): 15033-15041, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37756488

RESUMO

Phosphorus metabolites occupy a unique place in cellular function as critical intermediates and products of cellular metabolism. Human blood is the most widely used biospecimen in the clinic and in the metabolomics field, and hence an ability to profile phosphorus metabolites in blood, quantitatively, would benefit a wide variety of investigations of cellular functions in health and diseases. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the two premier analytical platforms used in the metabolomics field. However, detection and quantitation of phosphorus metabolites by MS can be challenging due to their lability, high polarity, structural isomerism, and interaction with chromatographic columns. The conventionally used 1H NMR, on the other hand, suffers from poor resolution of these compounds. As a remedy, 31P NMR promises an important alternative to both MS and 1H NMR. However, numerous challenges including the instability of phosphorus metabolites, their chemical shift sensitivity to solvent composition, pH, salt, and temperature, and the lack of identified metabolites have so far restricted the scope of 31P NMR. In the current study, we describe a method to analyze nearly 25 phosphorus metabolites in blood using a simple one-dimensional (1D) NMR spectrum. Establishment of the identity of unknown metabolites involved a combination of (a) comprehensively analyzing an array of 1D and two-dimensional (2D) 1H/31P homonuclear and heteronuclear NMR spectra of blood; (b) mapping the central carbon metabolic pathway; (c) developing and using 1H and 31P spectral and chemical shift databases; and finally (d) confirming the putative metabolite peaks with spiking using authentic compounds. The resulting simple 1D 31P NMR-based method offers an ability to visualize and quantify the levels of intermediates and products of multiple metabolic pathways, including central carbon metabolism, in one step. Overall, the findings represent a new dimension for blood metabolite analysis and are anticipated to greatly impact the blood metabolomics field.


Assuntos
Carbono , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Espectrometria de Massas
10.
J Physiol ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742081

RESUMO

Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise in young (5-7 months) and aged (27-29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non-stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially-targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle. KEY POINTS: Acute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non-stimulated muscle. Age-related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex-dependent. Respiration using glutamate after high-intensity contraction is inhibited in aged female muscle. Metabolite level and pathway changes following muscle contraction decrease with age in female mice. Treatment with the mitochondrially-targeted peptide elamipretide can partially rescue metabolite response to muscle contraction.

11.
Anal Chem ; 95(34): 12923-12930, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37582233

RESUMO

Recent efforts in our laboratory have enabled access to an unprecedented number (∼90) of quantifiable metabolites in human blood by a simple nuclear magnetic resonance (NMR) spectroscopy method, which includes energy coenzymes, redox coenzymes, and antioxidants that are fundamental to cellular functions [ J. Magn. Reson. Open 2022, 12-13, 100082]. The coenzymes and antioxidants, however, are notoriously labile and are extremely sensitive to specimen harvesting, extraction, and measurement conditions. This problem is largely underappreciated and carries the risk of grossly inaccurate measurements and incorrect study outcomes. As a part of addressing this challenge, in this study, human blood specimens were comprehensively and quantitatively investigated using 1H NMR spectroscopy. Freshly drawn human blood specimens were treated or not treated with methanol, ethanol, or a mixture of methanol and chloroform, and stored on ice or on bench, at room temperature for different time periods from 0 to 24 h, prior to storing at -80 °C. Interestingly, the labile metabolite levels were stable in blood treated with an organic solvent. However, their levels in blood in untreated samples increased or decreased by factors of up to 5 or more within 3 h. Further, surprisingly, and contrary to the current knowledge about metabolite stability, the variation of coenzyme levels was more dramatic in blood stored on ice than on bench, at room temperature. In addition, unlike the generally observed phenomenon of oxidation of redox coenzymes, reduction was observed in untreated blood. Such preanalytical dynamics of the labile metabolites potentially arises from the active cellular metabolism. From the metabolomics perspective, the massive variation of the labile metabolite levels even in blood stored on ice is alarming and stresses the critical need to immediately quench the cellular metabolism for reliable analyses. Overall, the results provide compelling evidence that warrants a paradigm shift in the sample collection protocol for blood metabolomics involving labile metabolites.


Assuntos
Antioxidantes , Metanol , Humanos , Antioxidantes/análise , Gelo/análise , Espectroscopia de Ressonância Magnética/métodos , Coenzimas/análise , Metabolômica/métodos
12.
Anal Chem ; 95(33): 12505-12513, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37557184

RESUMO

Metabolic pathways are regarded as functional and basic components of the biological system. In metabolomics, metabolite set enrichment analysis (MSEA) is often used to identify the altered metabolic pathways (metabolite sets) associated with phenotypes of interest (POI), e.g., disease. However, in most studies, MSEA suffers from the limitation of low metabolite coverage. Random walk (RW)-based algorithms can be used to propagate the perturbation of detected metabolites to the undetected metabolites through a metabolite network model prior to MSEA. Nevertheless, most of the existing RW-based algorithms run on a general metabolite network constructed based on public databases, such as KEGG, without taking into consideration the potential influence of POI on the metabolite network, which may reduce the phenotypic specificities of the MSEA results. To solve this problem, a novel pathway analysis strategy, namely, differential correlation-informed MSEA (dci-MSEA), is proposed in this paper. Statistically, differential correlations between metabolites are used to evaluate the influence of POI on the metabolite network, so that a phenotype-specific metabolite network is constructed for RW-based propagation. The experimental results show that dci-MSEA outperforms the conventional RW-based MSEA in identifying the altered metabolic pathways associated with colorectal cancer. In addition, by incorporating the individual-specific metabolite network, the dci-MSEA strategy is easily extended to disease heterogeneity analysis. Here, dci-MSEA was used to decipher the heterogeneity of colorectal cancer. The present results highlight the clustering of colorectal cancer samples with their cluster-specific selection of differential pathways and demonstrate the feasibility of dci-MSEA in heterogeneity analysis. Taken together, the proposed dci-MSEA may provide insights into disease mechanisms and determination of disease heterogeneity.


Assuntos
Neoplasias Colorretais , Metabolômica , Humanos , Metabolômica/métodos , Redes e Vias Metabólicas , Algoritmos , Fenótipo
13.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398086

RESUMO

Sarcopenia, the age-related loss of muscle mass and function, contributes to decreased quality of life in the elderly and increased healthcare costs. Decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance are all associated with increased oxidative stress and the decline in mitochondrial function with age. We hypothesized that elevated mitochondrial stress with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we designed two in vivo muscle-stimulation protocols to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise to characterize the effect of age and sex on mitochondrial substrate utilization in skeletal muscle following muscle contraction. Following HII stimulation, mitochondria from young skeletal muscle increased fatty acid oxidation compared to non-stimulated control muscle; however, mitochondria from aged muscle decreased fatty acid oxidation. In contrast, following LISS, mitochondrial from young skeletal muscle decreased fatty acid oxidation, whereas aged mitochondria increased fatty acid oxidation. We also found that HII can inhibit mitochondrial oxidation of glutamate in both stimulated and non-stimulated aged muscle, suggesting HII initiates circulation of an exerkine capable of altering whole-body metabolism. Analyses of the muscle metabolome indicates that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. Treatment with elamipretide, a mitochondrially targeted peptide, restored glutamate oxidation and metabolic pathway changes following HII suggesting rescuing redox status and improving mitochondrial function in aged muscle enhances the metabolic response to muscle contraction.

14.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37503266

RESUMO

Dietary restriction (DR) is a potent method to enhance lifespan and healthspan, but individual responses are influenced by genetic variations. Understanding how metabolism-related genetic differences impact longevity and healthspan are unclear. To investigate this, we used metabolites as markers to reveal how different genotypes respond to diet to influence longevity and healthspan traits. We analyzed data from Drosophila Genetic Reference Panel strains raised under AL and DR conditions, combining metabolomic, phenotypic, and genome-wide information. Employing two computational methods across species-random forest modeling within the DGRP and Mendelian randomization in the UK Biobank-we pinpointed key traits with cross-species relevance that influence lifespan and healthspan. Notably, orotate was linked to parental age at death in humans and counteracted DR effects in flies, while threonine extended lifespan, in a strain- and sex-specific manner. Thus, utilizing natural genetic variation data from flies and humans, we employed a systems biology approach to elucidate potential therapeutic pathways and metabolomic targets for diet-dependent changes in lifespan and healthspan.

15.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162854

RESUMO

Transplanted human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) improve ventricular performance when delivered acutely post-myocardial infarction but are ineffective in chronic myocardial infarction/heart failure. 2'-deoxy-ATP (dATP) activates cardiac myosin and potently increases contractility. Here we engineered hPSC-CMs to overexpress ribonucleotide reductase, the enzyme controlling dATP production. In vivo, dATP-producing CMs formed new myocardium that transferred dATP to host cardiomyocytes via gap junctions, increasing their dATP levels. Strikingly, when transplanted into chronically infarcted hearts, dATP-producing grafts increased left ventricular function, whereas heart failure worsened with wild-type grafts or vehicle injections. dATP-donor cells recipients had greater voluntary exercise, improved cardiac metabolism, reduced pulmonary congestion and pathological cardiac hypertrophy, and improved survival. This combination of remuscularization plus enhanced host contractility offers a novel approach to treating the chronically failing heart.

16.
J Nutr ; 153(9): 2663-2677, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37178978

RESUMO

BACKGROUND: A substantial observational literature relating specific fatty acid classes to chronic disease risk may be limited by its reliance on self-reported dietary data. OBJECTIVES: We aimed to develop biomarkers for saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acid densities, and to study their associations with cardiovascular disease (CVD), cancer, and type 2 diabetes (T2D) in Women's Health Initiative (WHI) cohorts. METHODS: Biomarker equations were based primarily on serum and urine metabolomics profiles from an embedded WHI human feeding study (n = 153). Calibration equations were based on biomarker values in a WHI nutritional biomarker study (n = 436). Calibrated intakes were assessed in relation to disease incidence in larger WHI cohorts (n = 81,894). Participants were postmenopausal women, aged 50-79 when enrolled at 40 United States Clinical Centers (1993-1998), with a follow-up period of ∼20 y. RESULTS: Biomarker equations meeting criteria were developed for SFA, MUFA, and PUFA densities. That for SFA density depended somewhat weakly on metabolite profiles. On the basis of our metabolomics platforms, biomarkers were insensitive to trans fatty acid intake. Calibration equations meeting criteria were developed for SFA and PUFA density, but not for MUFA density. With or without biomarker calibration, SFA density was associated positively with risk of CVD, cancer, and T2D, but with small hazard ratios, and CVD associations were not statistically significant after controlling for other dietary variables, including trans fatty acid and fiber intake. Following this same control, PUFA density was not significantly associated with CVD risk, but there were positive associations for some cancers and T2D, with or without biomarker calibration. CONCLUSIONS: Higher SFA and PUFA diets were associated with null or somewhat higher risk for clinical outcomes considered in this population of postmenopausal United States women. Further research is needed to develop even stronger biomarkers for these fatty acid densities and their major components. This study is registered with clinicaltrials.gov identifier: NCT00000611.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Neoplasias , Ácidos Graxos trans , Humanos , Feminino , Ácidos Graxos , Diabetes Mellitus Tipo 2/complicações , Pós-Menopausa , Biomarcadores , Doença Crônica , Gorduras na Dieta
17.
J Nutr ; 153(9): 2651-2662, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37245660

RESUMO

BACKGROUND: The Women's Health Initiative (WHI) randomized, controlled Dietary Modification (DM) trial of a low-fat dietary pattern suggested intervention benefits related to breast cancer, coronary heart disease (CHD), and diabetes. Here, we use WHI observational data for further insight into the chronic disease implications of adopting this type of low-fat dietary pattern. OBJECTIVES: We aimed to use our earlier work on metabolomics-based biomarkers of carbohydrate and protein to develop a fat intake biomarker by subtraction, to use the resulting biomarker to develop calibration equations that adjusts self-reported fat intake for measurement error, and to study associations of biomarker-calibrated fat intake with chronic disease risk in WHI cohorts. Corresponding studies for specific fatty acids will follow separately. METHODS: Prospective disease association results are presented using WHI cohorts of postmenopausal women, aged 50-79 y when enrolled at 40 United States clinical centers. Biomarker equations were developed using an embedded human feeding study (n = 153). Calibration equations were developed using a WHI nutritional biomarker study (n = 436). Calibrated intakes were associated with cancer, cardiovascular diseases, and diabetes incidence in WHI cohorts (n = 81,954) over an approximate 20-y follow-up period. RESULTS: A biomarker for fat density was developed by subtracting protein, carbohydrate, and alcohol densities from one. A calibration equation was developed for fat density. Hazard ratios (95% confidence intervals) for 20% higher fat density were 1.16 (1.06, 1.27) for breast cancer, 1.13 (1.02, 1.26) for CHD, and 1.19 (1.13, 1.26) for diabetes, in substantial agreement with findings from the DM trial. With control for additional dietary variables, especially fiber, fat density was no longer associated with CHD, with hazard ratio (95% confidence interval) of 1.00 (0.88, 1.13), whereas that for breast cancer was 1.11 (1.00, 1.24). CONCLUSIONS: WHI observational data support prior DM trial findings of low-fat dietary pattern benefits in this population of postmenopausal United States women. TRIAL REGISTRATION NUMBER: This study is registered with clinicaltrials.gov identifier: NCT00000611.


Assuntos
Neoplasias da Mama , Doença das Coronárias , Diabetes Mellitus , Feminino , Humanos , Estados Unidos/epidemiologia , Gorduras na Dieta , Estudos Prospectivos , Pós-Menopausa , Saúde da Mulher , Neoplasias da Mama/epidemiologia , Dieta com Restrição de Gorduras , Biomarcadores , Doença das Coronárias/epidemiologia , Carboidratos , Doença Crônica , Fatores de Risco
18.
Anal Chem ; 95(15): 6203-6211, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37023366

RESUMO

Drug combinations are commonly used to treat various diseases to achieve synergistic therapeutic effects or to alleviate drug resistance. Nevertheless, some drug combinations might lead to adverse effects, and thus, it is crucial to explore the mechanisms of drug interactions before clinical treatment. Generally, drug interactions have been studied using nonclinical pharmacokinetics, toxicology, and pharmacology. Here, we propose a complementary strategy based on metabolomics, which we call interaction metabolite set enrichment analysis, or iMSEA, to decipher drug interactions. First, a digraph-based heterogeneous network model was constructed to model the biological metabolic network based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Second, treatment-specific influences on all detected metabolites were calculated and propagated across the whole network model. Third, pathway activity was defined and enriched to quantify the influence of each treatment on the predefined functional metabolite sets, i.e., metabolic pathways. Finally, drug interactions were identified by comparing the pathway activity enriched by the drug combination treatments and the single drug treatments. A data set consisting of hepatocellular carcinoma (HCC) cells that were treated with oxaliplatin (OXA) and/or vitamin C (VC) was used to illustrate the effectiveness of the iMSEA strategy for evaluation of drug interactions. Performance evaluation using synthetic noise data was also performed to evaluate sensitivities and parameter settings for the iMSEA strategy. The iMSEA strategy highlighted synergistic effects of combined OXA and VC treatments including the alterations in the glycerophospholipid metabolism pathway and glycine, serine, and threonine metabolism pathway. This work provides an alternative method to reveal the mechanisms of drug combinations from the viewpoint of metabolomics.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Metabolômica/métodos , Redes e Vias Metabólicas , Interações Medicamentosas
19.
Anal Chem ; 95(18): 7220-7228, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37115661

RESUMO

For a large-scale metabolomics study, sample collection, preparation, and analysis may last several days, months, or even (intermittently) over years. This may lead to apparent batch effects in the acquired metabolomics data due to variability in instrument status, environmental conditions, or experimental operators. Batch effects may confound the true biological relationships among metabolites and thus obscure real metabolic changes. At present, most of the commonly used batch effect correction (BEC) methods are based on quality control (QC) samples, which require sufficient and stable QC samples. However, the quality of the QC samples may deteriorate if the experiment lasts for a long time. Alternatively, isotope-labeled internal standards have been used, but they generally do not provide good coverage of the metabolome. On the other hand, BEC can also be conducted through a data-driven method, in which no QC sample is needed. Here, we propose a novel data-driven BEC method, namely, CordBat, to achieve concordance between each batch of samples. In the proposed CordBat method, a reference batch is first selected from all batches of data, and the remaining batches are referred to as "other batches." The reference batch serves as the baseline for the batch adjustment by providing a coordinate of correlation between metabolites. Next, a Gaussian graphical model is built on the combined dataset of reference and other batches, and finally, BEC is achieved by optimizing the correction coefficients in the other batches so that the correlation between metabolites of each batch and their combinations are in concordance with that of the reference batch. Three real-world metabolomics datasets are used to evaluate the performance of CordBat by comparing it with five commonly used BEC methods. The present experimental results showed the effectiveness of CordBat in batch effect removal and the concordance of correlation between metabolites after BEC. CordBat was found to be comparable to the QC-based methods and achieved better performance in the preservation of biological effects. The proposed CordBat method may serve as an alternative BEC method for large-scale metabolomics that lack proper QC samples.


Assuntos
Metaboloma , Metabolômica , Espectrometria de Massas/métodos , Controle de Qualidade , Metabolômica/métodos
20.
Metabolites ; 13(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37110172

RESUMO

Demographic and clinical factors influence the metabolome. The discovery and validation of disease biomarkers are often challenged by potential confounding effects from such factors. To address this challenge, we investigated the magnitude of the correlation between serum and urine metabolites and demographic and clinical parameters in a well-characterized observational cohort of 444 post-menopausal women participating in the Women's Health Initiative (WHI). Using LC-MS and lipidomics, we measured 157 aqueous metabolites and 756 lipid species across 13 lipid classes in serum, along with 195 metabolites detected by GC-MS and NMR in urine and evaluated their correlations with 29 potential disease risk factors, including demographic, dietary and lifestyle factors, and medication use. After controlling for multiple testing (FDR < 0.01), we found that log-transformed metabolites were mainly associated with age, BMI, alcohol intake, race, sample storage time (urine only), and dietary supplement use. Statistically significant correlations were in the absolute range of 0.2-0.6, with the majority falling below 0.4. Incorporation of important potential confounding factors in metabolite and disease association analyses may lead to improved statistical power as well as reduced false discovery rates in a variety of data analysis settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...